A Survey of Forbidden Configuration Results

Author:

Anstee Richard

Abstract

Let $F$ be a $k\times \ell$ (0,1)-matrix. We say a (0,1)-matrix $A$ has $F$ as a configuration if there is a submatrix of $A$ which is a row and column permutation of $F$. In the language of sets, a configuration is a trace and in the language of hypergraphs a configuration is a subhypergraph.Let $F$ be a given $k\times \ell$ (0,1)-matrix. We define a matrix to be simple if it is a (0,1)-matrix with no repeated columns. The matrix $F$ need not be simple. We define $\hbox{forb}(m,F)$ as the maximum number of columns of any simple $m$-rowed matrix $A$ which do not contain $F$ as a configuration. Thus if $A$ is an $m\times n$ simple matrix which has no submatrix which is a row and column permutation of $F$ then $n\le\hbox{forb}(m,F)$. Or alternatively if $A$ is an $m\times (\hbox{forb}(m,F)+1)$ simple matrix then $A$ has a submatrix which is a row and column permutation of $F$. We call $F$ a forbidden configuration. The fundamental result is due to Sauer, Perles and Shelah, Vapnik and Chervonenkis. For $K_k$ denoting the $k\times 2^k$ submatrix of all (0,1)-columns on $k$ rows, then $\hbox{forb}(m,K_k)=\binom{m}{k-1}+\binom{m}{k-2}+\cdots \binom{m}{0}$. We seek asymptotic results for $\hbox{forb}(m,F)$ for a fixed $F$ and as $m$ tends to infinity . A conjecture of Anstee and Sali predicts the asymptotically best constructions from which to derive the asymptotics of $\hbox{forb}(m,F)$. The conjecture has helped guide the research and has been verified for $k\times \ell$ $F$ with $k=1,2,3$ and for simple $F$ with $k=4$ as well as other cases including $\ell=1,2$. We also seek exact values for $\hbox{forb}(m,F)$. 

Publisher

The Electronic Journal of Combinatorics

Subject

Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Helly-Type Theorems for the Ordering of the Vertices of a Hypergraph;Order;2023-05-16

2. Partitioning ordered hypergraphs;Journal of Combinatorial Theory, Series A;2021-01

3. Refuting conjectures in extremal combinatorics via linear programming;Journal of Combinatorial Theory, Series A;2020-01

4. Forbidden Configurations and Product Constructions;Graphs and Combinatorics;2013-09-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3