On Two Problems Regarding the Hamiltonian Cycle Game

Author:

Hefetz Dan,Stich Sebastian

Abstract

We consider the fair Hamiltonian cycle Maker-Breaker game, played on the edge set of the complete graph $K_n$ on $n$ vertices. It is known that Maker wins this game if $n$ is sufficiently large. We are interested in the minimum number of moves needed for Maker in order to win the Hamiltonian cycle game, and in the smallest $n$ for which Maker has a winning strategy for this game. We prove the following results: (1) If $n$ is sufficiently large, then Maker can win the Hamiltonian cycle game within $n+1$ moves. This bound is best possible and it settles a question of Hefetz, Krivelevich, Stojaković and Szabó; (2) If $n \geq 29$, then Maker can win the Hamiltonian cycle game. This improves the previously best bound of $600$ due to Papaioannou.

Publisher

The Electronic Journal of Combinatorics

Subject

Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. \(\boldsymbol{H}\)-Games Played on Vertex Sets of Random Graphs;SIAM Journal on Discrete Mathematics;2023-06-09

2. Maker–Breaker Games with Constraints;Trends in Mathematics;2021

3. Combinatorics;Landscape of 21st Century Mathematics;2021

4. On the WalkerMaker–WalkerBreaker games;Discrete Applied Mathematics;2020-05

5. Hamiltonian Maker–Breaker Games on Small Graphs;Experimental Mathematics;2019-04-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3