Abstract
In 1998, Allouche, Peyrière, Wen and Wen established that the Hankel determinants associated with the Thue-Morse sequence on $\{-1,1\}$ are always nonzero. Their proof depends on a set of sixteen recurrence relations. We present an alternative, purely combinatorial proof of the same result. We also re-prove a recent result of Coons on the non-vanishing of the Hankel determinants associated to two other classical integer sequences.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献