Abstract
The Terwilliger algebra $T(x)$ of a finite connected simple graph $\Gamma$ with respect to a vertex $x$ is the complex semisimple matrix algebra generated by the adjacency matrix $A$ of $\Gamma$ and the diagonal matrices $E_i^*(x)=\operatorname{diag}(v_i)$ $(i=0,1,2,\dots)$, where $v_i$ denotes the characteristic vector of the set of vertices at distance $i$ from $x$. The twisted Grassmann graph $\tilde{J}_q(2D+1,D)$ discovered by Van Dam and Koolen in 2005 has two orbits of the automorphism group on its vertex set, and it is known that one of the orbits has the property that $T(x)$ is thin whenever $x$ is chosen from it, i.e., every irreducible $T(x)$-module $W$ satisfies $\dim E_i^*(x)W\leqslant 1$ for all $i$. In this paper, we determine all the irreducible $T(x)$-modules of $\tilde{J}_q(2D+1,D)$ for this "thin" case.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献