Author:
Hassler Nathanaël,Treglown Andrew
Abstract
Balogh, Liu, Sharifzadeh and Treglown [Journal of the European Mathematical Society, 2018] recently gave a sharp count on the number of maximal sum-free subsets of $\{1, \dots, n\}$, thereby answering a question of Cameron and Erdős. In contrast, not as much is know about the analogous problem for finite abelian groups. In this paper we give the first sharp results in this direction, determining asymptotically the number of maximal sum-free sets in both the binary and ternary spaces $\mathbb Z^k_2$ and $\mathbb Z^k_3$. We also make progress on a conjecture of Balogh, Liu, Sharifzadeh and Treglown concerning a general lower bound on the number of maximal sum-free sets in abelian groups of a fixed order. Indeed, we verify the conjecture for all finite abelian groups with a cyclic component of size at least 3084. Other related results and open problems are also presented.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics