Fast Strategies in Waiter-Client Games
-
Published:2020-09-10
Issue:3
Volume:27
Page:
-
ISSN:1077-8926
-
Container-title:The Electronic Journal of Combinatorics
-
language:
-
Short-container-title:Electron. J. Combin.
Author:
Clemens Dennis,Gupta Pranshu,Hamann Fabian,Haupt Alexander,Mikalački Mirjana,Mogge Yannick
Abstract
Waiter-Client games are played on some hypergraph $(X,\mathcal{F})$, where $\mathcal{F}$ denotes the family of winning sets. For some bias $b$, during each round of such a game Waiter offers to Client $b+1$ elements of $X$, of which Client claims one for himself while the rest go to Waiter. Proceeding like this Waiter wins the game if she forces Client to claim all the elements of any winning set from $\mathcal{F}$. In this paper we study fast strategies for several Waiter-Client games played on the edge set of the complete graph, i.e. $X=E(K_n)$, in which the winning sets are perfect matchings, Hamilton cycles, pancyclic graphs, fixed spanning trees or factors of a given graph.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献