Abstract
A graph $\Gamma$ with diameter $d$ is strongly distance-regular if $\Gamma$ is distance-regular and its distance-$d$ graph $\Gamma _d$ is strongly regular. The known examples are all the connected strongly regular graphs (i.e. $d=2$), all the antipodal distance-regular graphs, and some distance-regular graphs with diameter $d=3$. The main result in this paper is a characterization of these graphs (among regular graphs with $d$ distinct eigenvalues), in terms of the eigenvalues, the sum of the multiplicities corresponding to the eigenvalues with (non-zero) even subindex, and the harmonic mean of the degrees of the distance-$d$ graph.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献