Author:
Chyzak Frédéric,Yeats Karen
Abstract
In this article, we study the enumeration by length of several walk models on the square lattice. We obtain bijections between walks in the upper half-plane returning to the $x$-axis and walks in the quarter plane. A recent work by Bostan, Chyzak, and Mahboubi has given a bijection for models using small north, west, and south-east steps. We adapt and generalize it to a bijection between half-plane walks using those three steps in two colours and a quarter-plane model over the symmetrized step set consisting of north, north-west, west, south, south-east, and east. We then generalize our bijections to certain models with large steps: for given $p\geq1$, a bijection is given between the half-plane and quarter-plane models obtained by keeping the small south-east step and replacing the two steps north and west of length 1 by the $p+1$ steps of length $p$ in directions between north and west. This model is close to, but distinct from, the model of generalized tandem walks studied by Bousquet-Mélou, Fusy, and Raschel.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献