Coloring Graph Classes with no Induced Fork via Perfect Divisibility

Author:

Karthick T.,Kaufmann Jenny,Sivaraman Vaidy

Abstract

For a graph $G$, $\chi(G)$ will denote its chromatic number, and $\omega(G)$ its clique number. A graph $G$ is said to be perfectly divisible if for all induced subgraphs $H$ of $G$, $V(H)$ can be partitioned into two sets $A$, $B$ such that $H[A]$ is perfect and $\omega(H[B]) < \omega(H)$. An integer-valued function $f$ is called a  $\chi$-binding function for a hereditary class of graphs $\cal C$ if $\chi(G) \leq f(\omega(G))$ for every graph $G\in \cal C$. The fork is the graph obtained from the complete bipartite graph $K_{1,3}$ by subdividing an edge once. The problem of finding a quadratic $\chi$-binding function for the class of fork-free graphs is open. In this paper, we study the structure of some classes of fork-free graphs; in particular, we study the class of (fork, $F$)-free graphs $\cal G$ in the context of perfect divisibility, where $F$ is a graph on five vertices with a stable set of size three, and show that every $G\in \cal G$ satisfies $\chi(G)\le \omega(G)^2$. We also note that the class $\cal G$ does not admit a linear $\chi$-binding function.

Publisher

The Electronic Journal of Combinatorics

Subject

Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Perfect divisibility and coloring of some fork-free graphs;Discrete Mathematics;2024-10

2. Polynomial χ-binding functions for t-broom-free graphs;Journal of Combinatorial Theory, Series B;2023-09

3. Coloring of Some Crown-Free Graphs;Graphs and Combinatorics;2023-08-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3