Rational Associahedra and Noncrossing Partitions

Author:

Armstrong Drew,Rhoades Brendon,Williams Nathan

Abstract

Each positive rational number $x>0$ can be written uniquely as $x=a/(b-a)$ for coprime positive integers $0<a<b$. We will identify $x$ with the pair $(a,b)$. In this paper we define for each positive rational $x>0$ a simplicial complex $\mathsf{Ass}(x)=\mathsf{Ass}(a,b)$ called the rational associahedron.  It is a pure simplicial complex of dimension $a-2$, and its maximal faces are counted by the rational Catalan number $$\mathsf{Cat}(x)=\mathsf{Cat}(a,b):=\frac{(a+b-1)!}{a!\,b!}.$$The cases $(a,b)=(n,n+1)$ and $(a,b)=(n,kn+1)$ recover the classical associahedron and its "Fuss-Catalan" generalization studied by Athanasiadis-Tzanaki and Fomin-Reading.  We prove that $\mathsf{Ass}(a,b)$ is shellable and give nice product formulas for its $h$-vector (the rational Narayana numbers) and $f$-vector (the rational Kirkman numbers).  We define $\mathsf{Ass}(a,b)$ via rational Dyck paths: lattice paths from $(0,0)$ to $(b,a)$ staying above the line $y = \frac{a}{b}x$.  We also use rational Dyck paths to define a rational generalization of noncrossing perfect matchings of $[2n]$.  In the case $(a,b) = (n, mn+1)$, our construction produces the noncrossing partitions of $[(m+1)n]$ in which each block has size $m+1$.

Publisher

The Electronic Journal of Combinatorics

Subject

Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Combinatorics and braid varieties;Proceedings of Symposia in Pure Mathematics;2024

2. (_{}×_{})-modules of multivariate diagonal harmonics;Proceedings of Symposia in Pure Mathematics;2024

3. A Unifying Framework for the $$\nu $$-Tamari Lattice and Principal Order Ideals in Young’s Lattice;Combinatorica;2023-06

4. Schröder combinatorics and ν-associahedra;European Journal of Combinatorics;2021-12

5. A Reciprocity on Finite Abelian Groups Involving Zero-Sum Sequences;SIAM Journal on Discrete Mathematics;2021-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3