Author:
Shimozono Mark,White Dennis E.
Abstract
We describe the domino Schensted algorithm of Barbasch, Vogan, Garfinkle and van Leeuwen. We place this algorithm in the context of Haiman's mixed and left-right insertion algorithms and extend it to colored words. It follows easily from this description that total color of a colored word maps to the sum of the spins of a pair of $2$-ribbon tableaux. Various other properties of this algorithm are described, including an alternative version of the Littlewood-Richardson bijection which yields the $q$-Littlewood-Richardson coefficients of Carré and Leclerc. The case where the ribbon tableau decomposes into a pair of rectangles is worked out in detail. This case is central in recent work by D. White on the number of even and odd linear extensions of a product of two chains.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献