Author:
Aguiló F.,Simó E.,Zaragozá M.
Abstract
A double-loop digraph $G(N;s_1,s_2)=G(V,E)$ is defined by $V={\bf Z}_N$ and $E=\{(i,i+s_1), (i,i+s_2)|\; i\in V\}$, for some fixed steps $1\leq s_1 < s_2 < N$ with $\gcd(N,s_1,s_2)=1$. Let $D(N;s_1,s_2)$ be the diameter of $G$ and let us define $$ D(N)=\min_{\scriptstyle1\leq s_1 < s_2 < N,\atop\scriptstyle\gcd(N,s_1,s_2)=1}D(N;s_1,s_2),\quad D_1(N)=\min_{1 < s < N}D(N;1,s). $$ Some early works about the diameter of these digraphs studied the minimization of $D(N;1,s)$, for a fixed value $N$, with $1 < s < N$. Although the identity $D(N)=D_1(N)$ holds for infinite values of $N$, there are also another infinite set of integers with $D(N) < D_1(N)$. These other integral values of $N$ are called non-unit step integers or nus integers. In this work we give a characterization of nus integers and a method for finding infinite families of nus integers is developed. Also the tight nus integers are classified. As a consequence of these results, some errata and some flaws in the bibliography are corrected.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献