Abstract
We derive theoretical upper and lower bounds on the maximum size of DNA codes of length $n$ with constant GC-content $w$ and minimum Hamming distance $d$, both with and without the additional constraint that the minimum Hamming distance between any codeword and the reverse-complement of any codeword be at least $d$. We also explicitly construct codes that are larger than the best previously-published codes for many choices of the parameters $n$, $d$ and $w$.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献