Author:
Francesco Philippe Di,Kedem Rinat
Abstract
We give the path model solution for the cluster algebra variables of the $T$-system of type $A_r$ with generic boundary conditions. The solutions are partition functions of (strongly) non-intersecting paths on weighted graphs. The graphs are the same as those constructed for the $Q$-system in our earlier work, and depend on the seed or initial data in terms of which the solutions are given. The weights are "time-dependent" where "time" is the extra parameter which distinguishes the $T$-system from the $Q$-system, usually identified as the spectral parameter in the context of representation theory. The path model is alternatively described on a graph with non-commutative weights, and cluster mutations are interpreted as non-commutative continued fraction rearrangements. As a consequence, the solution is a positive Laurent polynomial of the seed data.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献