On Completing Partial Latin Squares with Prescribed Diagonals

Author:

Andersen Lars,Baumann Stacie,Hilton Anthony,Rodger Chris

Abstract

Necessary and sufficient numerical conditions are known for the embedding of an incomplete latin square $L$ of order $n$ into a latin square $T$ of order $t \geq 2n+1$ in which each symbol is prescribed to occur in a given number of cells on the diagonal of $T$ outside of $L$. This includes the classic case where $T$ is required to be idempotent. If $t<2n$ then no such numerical sufficient conditions exist since it is known that the arrangement of symbols within the given incomplete latin square can determine the embeddibility. All examples where the arrangement is a factor share the common feature that one symbol is prescribed to appear exactly once in the diagonal of $T$ outside of $L$, resulting in a conjecture over 30 years ago stating that it is only this feature that prevents numerical conditions sufficing for all $t \geq n$.In this paper we prove this conjecture, providing necessary and sufficient numerical conditions for the embedding of an incomplete latin square $L$ of order $n$ into a latin square $T$ of order $t$ for all $t \geq n$ in which the diagonal of $T$ outside of $L$ is prescribed in the case where no symbol is required to appear exactly once in the diagonal of $T$ outside of $L$.

Publisher

The Electronic Journal of Combinatorics

Subject

Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3