Author:
Broere Izak,Pilśniak Monika
Abstract
The distinguishing index $D^\prime(G)$ of a graph $G$ is the least cardinal $d$ such that $G$ has an edge colouring with $d$ colours that is only preserved by the trivial automorphism. This is similar to the notion of the distinguishing number $D(G)$ of a graph $G$, which is defined with respect to vertex colourings.We derive several bounds for infinite graphs, in particular, we prove the general bound $D^\prime(G)\leq\Delta(G)$ for an arbitrary infinite graph. Nonetheless, the distinguishing index is at most two for many countable graphs, also for the infinite random graph and for uncountable tree-like graphs.We also investigate the concept of the motion of edges and its relationship with the Infinite Motion Lemma.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献