Automorphisms and Enumeration of Switching Classes of Tournaments.

Author:

Babai L.,Cameron P. J.

Abstract

Two tournaments $T_1$ and $T_2$ on the same vertex set $X$ are said to be switching equivalent if $X$ has a subset $Y$ such that $T_2$ arises from $T_1$ by switching all arcs between $Y$ and its complement $X\setminus Y$. The main result of this paper is a characterisation of the abstract finite groups which are full automorphism groups of switching classes of tournaments: they are those whose Sylow 2-subgroups are cyclic or dihedral. Moreover, if $G$ is such a group, then there is a switching class $C$, with Aut$(C)\cong G$, such that every subgroup of $G$ of odd order is the full automorphism group of some tournament in $C$. Unlike previous results of this type, we do not give an explicit construction, but only an existence proof. The proof follows as a special case of a result on the full automorphism group of random $G$-invariant digraphs selected from a certain class of probability distributions. We also show that a permutation group $G$, acting on a set $X$, is contained in the automorphism group of some switching class of tournaments with vertex set $X$ if and only if the Sylow 2-subgroups of $G$ are cyclic or dihedral and act semiregularly on $X$. Applying this result to individual permutations leads to an enumeration of switching classes, of switching classes admitting odd permutations, and of tournaments in a switching class. We conclude by remarking that both the class of switching classes of finite tournaments, and the class of "local orders" (that is, tournaments switching-equivalent to linear orders), give rise to countably infinite structures with interesting automorphism groups (by a theorem of Fraïssé).

Publisher

The Electronic Journal of Combinatorics

Subject

Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Skew-adjacency matrices of tournaments with bounded principal minors;Discrete Mathematics;2023-10

2. Difference Sets Disjoint from a Subgroup III: The Skew Relative Cases;Graphs and Combinatorics;2023-06-13

3. Super Graphs on Groups, I;Graphs and Combinatorics;2022-05-23

4. Matching in Power Graphs of Finite Groups;Annals of Combinatorics;2022-03-13

5. Decomposability index of tournaments;Discrete Mathematics;2017-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3