Abstract
We construct for each $\mu\vdash n $ a bigraded $S_n$-module $\mathbf{H}_\mu$ and conjecture that its Frobenius characteristic $C_{\mu}(x;q,t)$ yields the Macdonald coefficients $K_{\lambda\mu}(q,t)$. To be precise, we conjecture that the expansion of $C_{\mu}(x;q,t)$ in terms of the Schur basis yields coefficients $C_{\lambda\mu}(q,t)$ which are related to the $K_{\lambda\mu}(q,t)$ by the identity $C_{\lambda\mu}(q,t)=K_{\lambda\mu}(q,1/t)t^{n(\mu )}$. The validity of this would give a representation theoretical setting for the Macdonald basis $\{ P_\mu(x;q,t)\}_\mu$ and establish the Macdonald conjecture that the $K_{\lambda\mu}(q,t)$ are polynomials with positive integer coefficients. The space $\mathbf{H}_\mu$ is defined as the linear span of derivatives of a certain bihomogeneous polynomial $\Delta_\mu(x,y)$ in the variables $x_1,x_2,\ldots ,x_n$, $y_1,y_2,\ldots ,y_n$. On the validity of our conjecture $\mathbf{H}_\mu$ would necessarily have $n!$ dimension. We refer to the latter assertion as the $n!$-conjecture. Several equivalent forms of this conjecture will be discussed here together with some of their consequences. In particular, we derive that the polynomials $C_{\lambda\mu}(q,t)$ have a number of basic properties in common with the coefficients $\tilde{K}_{\lambda\mu}(q,t)=K_{\lambda\mu}(q,1/t)t^{n(\mu )}$. For instance, we show that $C_{\lambda\mu}(0,t)=\tilde{K}_{\lambda\mu}(0,t)$, $C_{\lambda\mu}(q,0)=\tilde{K}_{\lambda\mu}(q,0)$ and show that on the $n!$ conjecture we must also have the equalities $C_{\lambda\mu}(1,t)=\tilde{K}_{\lambda\mu}(1,t)$ and $C_{\lambda\mu}(q,1)=\tilde{K}_{\lambda\mu}(q,1)$. The conjectured equality $C_{\lambda\mu}(q,t)=K_{\lambda\mu}(q,1/t)t^{n(\mu )}$ will be shown here to hold true when $\lambda$ or $\mu$ is a hook. It has also been shown (see [9]) when $\mu$ is a $2$-row or $2$-column partition and in [18] when $\mu$ is an augmented hook.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Modified Macdonald polynomials and the multispecies zero range process: II;Mathematische Zeitschrift;2024-09-13
2. LLT polynomials in the Schiffmann algebra;Journal für die reine und angewandte Mathematik (Crelles Journal);2024-04-23
3. The mystery of plethysm coefficients;Proceedings of Symposia in Pure Mathematics;2024
4. A Proof of the Extended Delta Conjecture;Forum of Mathematics, Pi;2023
5. A Shuffle Theorem for Paths Under Any Line;Forum of Mathematics, Pi;2023