Polynomially Bounding the Number of Minimal Separators in Graphs: Reductions, Sufficient Conditions, and a Dichotomy Theorem

Author:

Milanič Martin,Pivač Nevena

Abstract

A graph class is said to be tame if graphs in the class have a polynomially bounded number of minimal separators. Tame graph classes have good algorithmic properties, which follow, for example, from an algorithmic metatheorem of Fomin, Todinca, and Villanger from 2015. We show that a hereditary graph class $\mathcal{G}$ is tame if and only if the subclass consisting of graphs in $\mathcal{G}$ without clique cutsets is tame. This result and Ramsey's theorem lead to several types of sufficient conditions for a graph class to be tame. In particular, we show that any hereditary class of graphs of bounded clique cover number that excludes some complete prism is tame, where a complete prism is the Cartesian product of a complete graph with a $K_2$. We apply these results, combined with constructions of graphs with exponentially many minimal separators, to develop a dichotomy theorem separating tame from non-tame graph classes within the family of graph classes defined by sets of forbidden induced subgraphs with at most four vertices.

Publisher

The Electronic Journal of Combinatorics

Subject

Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3