The Size of the Giant Joint Component in a Binomial Random Double Graph
-
Published:2021-02-12
Issue:1
Volume:28
Page:
-
ISSN:1077-8926
-
Container-title:The Electronic Journal of Combinatorics
-
language:
-
Short-container-title:Electron. J. Combin.
Author:
Jerrum Mark,Makai Tamás
Abstract
We study the joint components in a random 'double graph' that is obtained by superposing red and blue binomial random graphs on $n$~vertices. A joint component is a maximal set of vertices that supports both a red and a blue spanning tree. We show that there are critical pairs of red and blue edge densities at which a giant joint component appears. In contrast to the standard binomial graph model, the phase transition is first order: the size of the largest joint component jumps from $O(1)$ vertices to $\Theta(n)$ at the critical point. We connect this phenomenon to the properties of a certain bicoloured branching process.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献