Van der Waerden/Schrijver-Valiant like Conjectures and Stable (aka Hyperbolic) Homogeneous Polynomials: One Theorem for all

Author:

Gurvits Leonid

Abstract

Let $p$ be a homogeneous polynomial of degree $n$ in $n$ variables, $p(z_1,...,z_n) = p(Z) , Z \in C^{n}$. We call a such polynomial $p$ H-Stable if $p(z_1,...,z_n) \neq 0$ provided the real parts $Re(z_i) > 0, 1 \leq i \leq n$. This notion from Control Theory is closely related to the notion of Hyperbolicity used intensively in the PDE theory. The main theorem in this paper states that if $p(x_1,...,x_n)$ is a homogeneous H-Stable polynomial of degree $n$ with nonnegative coefficients; $deg_{p}(i)$ is the maximum degree of the variable $x_i$, $C_i = \min(deg_{p}(i),i)$ and $Cap(p) = \inf_{x_i > 0, 1 \leq i \leq n} {p(x_1,...,x_n)\over x_1 \cdots x_n}$ then the following inequality holds $${\partial^n\over\partial x_1...\partial x_n} p(0,...,0) \geq Cap(p) \prod_{2 \leq i \leq n} \bigg({C_i-1\over C_i}\bigg)^{C_{i}-1}.$$ This inequality is a vast (and unifying) generalization of the Van der Waerden conjecture on the permanents of doubly stochastic matrices as well as the Schrijver-Valiant conjecture on the number of perfect matchings in $k$-regular bipartite graphs. These two famous results correspond to the H-Stable polynomials which are products of linear forms. Our proof is relatively simple and "noncomputational"; it uses just very basic properties of complex numbers and the AM/GM inequality.

Publisher

The Electronic Journal of Combinatorics

Subject

Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Determinantal Representations and the Image of the Principal Minor Map;International Mathematics Research Notices;2024-03-19

2. A (Slightly) Improved Approximation Algorithm for Metric TSP;Operations Research;2023-05-18

3. Introduction to the combinatorial atlas;Expositiones Mathematicae;2022-12

4. Lower bounds for contingency tables via Lorentzian polynomials;Israel Journal of Mathematics;2022-10-20

5. The Halász–Székely barycenter;Proceedings of the Edinburgh Mathematical Society;2022-10-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3