Locally Hamiltonian Graphs and Minimal Size of Maximal Graphs on a Surface
-
Published:2020-05-29
Issue:2
Volume:27
Page:
-
ISSN:1077-8926
-
Container-title:The Electronic Journal of Combinatorics
-
language:
-
Short-container-title:Electron. J. Combin.
Author:
Davies James,Thomassen Carsten
Abstract
We prove that every locally Hamiltonian graph with $n$ vertices and possibly with multiple edges has at least $3n-6$ edges with equality if and only if it triangulates the sphere. As a consequence, every edge-maximal embedding of a graph $G$ on some 2-dimensional surface $\Sigma$ (not necessarily compact) has at least $3n-6$ edges with equality if and only if $G$ also triangulates the sphere. If, in addition, $G$ is simple, then for each vertex $v$, the cyclic ordering of the edges around $v$ on $\Sigma$ is the same as the clockwise or anti-clockwise orientation around $v$ on the sphere. If $G$ contains no complete graph on 4 vertices, then the face-boundaries are the same in the two embeddings.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献