Author:
Clark Gregory J.,Cooper Joshua N.
Abstract
We show that $\lambda$ is an eigenvalue of a $k$-uniform hypertree $(k \geq 3)$ if and only if it is a root of a particular matching polynomial for a connected induced subtree. We then use this to provide a spectral characterization for power hypertrees. Notably, the situation is quite different from that of ordinary trees, i.e., $2$-uniform trees. We conclude by presenting an example (an $11$ vertex, $3$-uniform non-power hypertree) illustrating these phenomena.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献