Level Algebras and $\mathbf {s}$-Lecture Hall Polytopes
-
Published:2020-09-04
Issue:3
Volume:27
Page:
-
ISSN:1077-8926
-
Container-title:The Electronic Journal of Combinatorics
-
language:
-
Short-container-title:Electron. J. Combin.
Author:
Kohl Florian,Olsen McCabe
Abstract
Given a family of lattice polytopes, a common endeavor in Ehrhart theory is the classification of those polytopes in the family that are Gorenstein, or more generally level. In this article, we consider these questions for ${\boldsymbol s}$-lecture hall polytopes, which are a family of simplices arising from $\mathbf {s}$-lecture hall partitions. In particular, we provide concrete classifications for both of these properties purely in terms of ${\boldsymbol s}$-inversion sequences. Moreover, for a large subfamily of ${\boldsymbol s}$-lecture hall polytopes, we provide a more geometric classification of the Gorenstein property in terms of its tangent cones. We then show how one can use the classification of level ${\boldsymbol s}$-lecture hall polytopes to construct infinite families of level ${\boldsymbol s}$-lecture hall polytopes, and to describe level ${\boldsymbol s}$-lecture hall polytopes in small dimensions.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Cayley Sums and Minkowski Sums of Lattice Polytopes;SIAM Journal on Discrete Mathematics;2023-06-23