Author:
Fulmek Markus,Kleber Michael
Abstract
We present a "method" for bijective proofs for determinant identities, which is based on translating determinants to Schur functions by the Jacobi–Trudi identity. We illustrate this "method" by generalizing a bijective construction (which was first used by Goulden) to a class of Schur function identities, from which we shall obtain bijective proofs for Dodgson's condensation formula, Plücker relations and a recent identity of the second author.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献