Cubic Graphs with Colouring Defect 3

Author:

Karabáš Ján,Máčajová Edita,Nedela Roman,Škoviera Martin

Abstract

The colouring defect of a cubic graph is the smallest number of edges left uncovered by any set of three perfect matchings. While $3$-edge-colourable graphs have defect $0$, those that cannot be $3$-edge-coloured (that is, snarks) are known to have defect at least $3$. In this paper we focus on the structure and properties of snarks with defect $3$. For such snarks we develop a theory of reductions similar to standard reductions of short cycles and small cuts in general snarks. We prove that every snark with defect $3$ can be reduced to a snark with defect $3$ which is either nontrivial (cyclically $4$-edge-connected and of girth at least $5$) or to one that arises from a nontrivial snark of defect greater than $3$ by inflating a vertex lying on a suitable $5$-cycle to a triangle. The proofs rely on a detailed analysis of Fano flows associated with triples of perfect matchings leaving exactly three uncovered edges. In the final part of the paper we discuss application of our results to the conjectures of Berge and Fulkerson, which provide the main motivation for our research.

Publisher

The Electronic Journal of Combinatorics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3