On Pattern Avoidance in Matchings and Involutions
-
Published:2022-02-25
Issue:1
Volume:29
Page:
-
ISSN:1077-8926
-
Container-title:The Electronic Journal of Combinatorics
-
language:
-
Short-container-title:Electron. J. Combin.
Author:
Fang Jonathan J.,Hamaker Zachary,Troyka Justin M.
Abstract
We study the relationship between two notions of pattern avoidance for involutions in the symmetric group and their restriction to fixed-point-free involutions. The first is classical, while the second appears in the geometry of certain spherical varieties and generalizes the notion of pattern avoidance for perfect matchings studied by Jelínek. The first notion can always be expressed in terms of the second, and we give an effective algorithm to do so. We also give partial results characterizing the families of involutions where the converse holds. As a consequence, we prove two conjectures of McGovern characterizing (rational) smoothness of certain varieties. We also give new enumerative results, and conclude by proposing several lines of inquiry that extend our current work.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献