Constrained graph processes

Author:

Bollobás Béla,Riordan Oliver

Abstract

Let $\mathcal{Q}$ be a monotone decreasing property of graphs $G$ on $n$ vertices. Erdős, Suen and Winkler [5] introduced the following natural way of choosing a random maximal graph in $\mathcal{Q}$: start with $G$ the empty graph on $n$ vertices. Add edges to $G$ one at a time, each time choosing uniformly from all $e\in G^c$ such that $G+e\in \mathcal{Q}$. Stop when there are no such edges, so the graph $G_\infty$ reached is maximal in $\mathcal{Q}$. Erdős, Suen and Winkler asked how many edges the resulting graph typically has, giving good bounds for $\mathcal{Q}=\{$bipartite graphs$\}$ and $\mathcal{Q}=\{$triangle free graphs$\}$. We answer this question for $C_4$-free graphs and for $K_4$-free graphs, by considering a related question about standard random graphs $G_p\in \mathcal{G}(n,p)$. The main technique we use is the 'step by step' approach of [3]. We wish to show that $G_p$ has a certain property with high probability. For example, for $K_4$ free graphs the property is that every 'large' set $V$ of vertices contains a triangle not sharing an edge with any $K_4$ in $G_p$. We would like to apply a standard Martingale inequality, but the complicated dependence involved is not of the right form. Instead we examine $G_p$ one step at a time in such a way that the dependence on what has gone before can be split into 'positive' and 'negative' parts, using the notions of up-sets and down-sets. The relatively simple positive part is then estimated directly. The much more complicated negative part can simply be ignored, as shown in [3].

Publisher

The Electronic Journal of Combinatorics

Subject

Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Simple evolving random graphs;Physical Review E;2024-06-10

2. The Early Evolution of the Random Graph Process in Planar Graphs and Related Classes;SIAM Journal on Discrete Mathematics;2023-01-20

3. A variant of the Erdős–Rényi random graph process;Journal of Graph Theory;2022-08-05

4. Random cliques in random graphs and sharp thresholds for F$$ F $$‐factors;Random Structures & Algorithms;2022-07-22

5. A randomized construction of high girth regular graphs;Random Structures & Algorithms;2020-11-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3