Abstract
We prove the curious identity in the sense of formal power series:\[\int_{-\infty}^{\infty}[y^m]\exp\left(-\frac{t^2}2+\sum_{j\ge3}\frac{(it)^j}{j!}\, y^{j-2}\right)\mathrm{d} t= \int_{-\infty}^{\infty}[y^m]\exp\left(-\frac{t^2}2+\sum_{j\ge3}\frac{(it)^j}{j}\, y^{j-2}\right)\mathrm{d} t,\]for $m=0,1,\dots$, where $[y^m]f(y)$ denotes the coefficient of $y^m$ in the Taylor expansion of $f$, which arises from applying the saddle-point method to derive Stirling's formula. The generality of the same approach (saddle-point method over two different contours) is also examined, together with some applications to asymptotic enumeration.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics