Lichiardopol’s Conjecture on Disjoint Cycles in Tournaments
-
Published:2020-06-12
Issue:2
Volume:27
Page:
-
ISSN:1077-8926
-
Container-title:The Electronic Journal of Combinatorics
-
language:
-
Short-container-title:Electron. J. Combin.
Author:
Ma Fuhong,West Douglas B.,Yan Jin
Abstract
In 2010, Lichiardopol conjectured for $q \geqslant 3$ and $k \geqslant 1$ that any tournament with minimum out-degree at least $(q-1)k-1$ contains $k$ disjoint cycles of length $q$. Previously the conjecture was known to hold for $q\leqslant 4$. We prove that it holds for $q \geqslant 5$, thereby completing the proof of the conjecture.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献