Abstract
Shannon OR-capacity $C_{\rm OR}(G)$ of a graph $G$, that is the traditionally more often used Shannon AND-capacity of the complementary graph, is a homomorphism monotone graph parameter therefore $C_{\rm OR}(F\times G)\leqslant\min\{C_{\rm OR}(F),C_{\rm OR}(G)\}$ holds for every pair of graphs, where $F\times G$ is the categorical product of graphs $F$ and $G$. Here we initiate the study of the question when could we expect equality in this inequality. Using a strong recent result of Zuiddam, we show that if this "Hedetniemi-type" equality is not satisfied for some pair of graphs then the analogous equality is also not satisfied for this graph pair by some other graph invariant that has a much "nicer" behavior concerning some different graph operations. In particular, unlike Shannon OR-capacity or the chromatic number, this other invariant is both multiplicative under the OR-product and additive under the join operation, while it is also nondecreasing along graph homomorphisms. We also present a natural lower bound on $C_{\rm OR}(F\times G)$ and elaborate on the question of how to find graph pairs for which it is known to be strictly less than the upper bound $\min\{C_{\rm OR}(F),C_{\rm OR}(G)\}$. We present such graph pairs using the properties of Paley graphs.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献