The Set of Ratios of Derangements to Permutations in Digraphs is Dense in $[0,1/2]$
-
Published:2022-01-28
Issue:1
Volume:29
Page:
-
ISSN:1077-8926
-
Container-title:The Electronic Journal of Combinatorics
-
language:
-
Short-container-title:Electron. J. Combin.
Author:
Austhof Bethany,Bennett Patrick,Christo Nick
Abstract
A permutation in a digraph $G=(V, E)$ is a bijection $f:V \rightarrow V$ such that for all $v \in V$ we either have that $f$ fixes $v$ or $(v, f(v)) \in E$. A derangement in $G$ is a permutation that does not fix any vertex. Bucic, Devlin, Hendon, Horne and Lund proved that in any digraph, the ratio of derangements to permutations is at most $1/2$. Answering a question posed by Bucic, Devlin, Hendon, Horne and Lund, we show that the set of possible ratios of derangements to permutations in digraphs is dense in the interval $[0, 1/2]$.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Deranged Matchings: Proofs and Conjectures;The American Mathematical Monthly;2023-12