Abstract
There has been much recent interest in random graphs sampled uniformly from the n-vertex graphs in a suitable minor-closed class, such as the class of all planar graphs. Here we use combinatorial and probabilistic methods to investigate a more general model. We consider random graphs from a 'well-behaved' class of graphs: examples of such classes include all minor-closed classes of graphs with 2-connected excluded minors (such as forests, series-parallel graphs and planar graphs), the class of graphs embeddable on any given surface, and the class of graphs with at most $k$ vertex-disjoint cycles. Also, we give weights to edges and components to specify probabilities, so that our random graphs correspond to the random cluster model, appropriately conditioned.We find that earlier results extend naturally in both directions, to general well-behaved classes of graphs, and to the weighted framework, for example results concerning the probability of a random graph being connected; and we also give results on the 2-core which are new even for the uniform (unweighted) case.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献