Author:
Russell Alexander,Sundaram Ravi
Abstract
A graph $G$ is said to be $d$-distinguishable if there is a $d$-coloring of $G$ which no non-trivial automorphism preserves. That is, $\exists \chi: G \rightarrow \{1, \ldots, d\},$ $$ \forall \phi \in \mathrm{Aut}(G) \setminus \{\mathbf{id}\}, \exists v, \chi(v) \neq \chi(\phi(v)). $$ It was conjectured that if $|G| > |\mathrm{Aut}(G)|$ and the $\mathrm{Aut}(G)$ action on $G$ has no singleton orbits, then $G$ is 2-distinguishable. We give an example where this fails. We partially repair the conjecture by showing that when "enough motion occurs," the distinguishing number does indeed decay. Specifically, defining $$ {\mathrm{m} }(G) = \min_{{\phi \in \mathrm{Aut}(G)} \atop {\phi \neq \mathbf{id}}} |\{v \in G \;:\;\phi(v) \neq v\}|, $$ we show that when ${\mathrm{m}}(G) > 2\log_2 |\mathrm{Aut}(G)|$, $G$ is 2-distinguishable. In general, we show that if $ {\mathrm{m}}(G)\ln d > 2\ln |\mathrm{Aut}(G)|$ then $G$ is $d$-distinguishable. There has been considerable interest in the computational complexity of the $d$-distinguishability problem. Specifically, there has been much musing on the computational complexity of the language $$ \{(G, d)\; : \; G \text{ is $d$-distinguishable}\}. $$ We show that this language lies in AM $\subset \Sigma_2^P \cap \Pi_2^P$. We use this to conclude that if Dist is $\mathbf{coNP}$-hard then the polynomial hierarchy collapses.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献