On Some Extremal and Probabilistic Questions for Tree Posets

Author:

Patkós Balázs,Treglown Andrew

Abstract

Given two posets $P,Q$ we say that $Q$ is $P$-free if $Q$ does not contain a copy of $P$. The size of the largest $P$-free family in $2^{[n]}$, denoted by $La(n,P)$, has been extensively studied since the 1980s. We consider several related problems. For posets $P$ whose Hasse diagrams are trees and have radius at most $2$, we prove that there are $2^{(1+o(1))La(n,P)}$ $P$-free families in $2^{[n]}$, thereby confirming a conjecture of Gerbner, Nagy, Patkós and Vizer [Electronic Journal of Combinatorics, 2021] in this case. For such $P$ we also resolve the random version of the $P$-free problem, thus generalising the random version of Sperner's theorem due to Balogh, Mycroft and Treglown [Journal of Combinatorial Theory Series A, 2014], andCollares Neto and Morris [Random Structures and Algorithms, 2016]. Additionally, we make a general conjecture that, roughly speaking, asserts that subfamilies of $2^{[n]}$ of size sufficiently above $La(n,P)$ robustly contain $P$, for any poset $P$ whose Hasse diagram is a tree.

Publisher

The Electronic Journal of Combinatorics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3