A Further Extension of Rödl's Theorem

Author:

Nguyen Tung

Abstract

Fix $\varepsilon>0$ and a nonnull graph $H$. A well-known theorem of Rödl from the 80s says that every graph $G$ with no induced copy of $H$ contains a linear-sized $\varepsilon$-restricted set $S\subseteq V(G)$, which means $S$ induces a subgraph with maximum degree at most $\varepsilon |S|$ in $G$ or its complement. There are two extensions of this result: quantitatively, Nikiforov (and later Fox and Sudakov) relaxed the condition "no induced copy of $H$" into "at most $\kappa|G|^{|H|}$ induced copies of $H$ for some $\kappa>0$" depending on $H$ and $\varepsilon$; and qualitatively, Chudnovsky, Scott, Seymour, and Spirkl recently showed that there exists $N>0$ depending on $H$ and $\varepsilon$ such that $G$ is $(N,\varepsilon)$-restricted, which means $V(G)$ has a partition into at most $N$ subsets that are $\varepsilon$-restricted. A natural common generalization of these two asserts that every graph $G$ with at most $\kappa|G|^{|H|}$ induced copies of $H$ is $(N,\varepsilon)$-restricted for some $\kappa,N>0$. This is unfortunately false, but we prove that for every $\varepsilon>0$, $\kappa$ and $N$ still exist so that for every $d\ge0$, every graph with at most $\kappa d^{\vert H\vert}$ induced copies of $H$ has an $(N,\varepsilon)$-restricted induced subgraph on at least $\vert G\vert-d$ vertices. This unifies the two aforementioned theorems, and is optimal up to$\kappa$ and $N$ for every value of $d$.  

Publisher

The Electronic Journal of Combinatorics

Subject

Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Strengthening Rödl's theorem;Journal of Combinatorial Theory, Series B;2023-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3