Author:
Axenovich Maria,Fon-Der-Flaass Dmitri
Abstract
Consider natural numbers $\{1, \cdots, n\}$ colored in three colors. We prove that if each color appears on at least $(n+4)/6$ numbers then there is a three-term arithmetic progression whose elements are colored in distinct colors. This variation on the theme of Van der Waerden's theorem proves the conjecture of Jungić et al.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献