Author:
Brodsky Alex,Durocher Stephane,Gethner Ellen
Abstract
The rectilinear crossing number of a graph $G$ is the minimum number of edge crossings that can occur in any drawing of $G$ in which the edges are straight line segments and no three vertices are collinear. This number has been known for $G=K_n$ if $n \leq 9$. Using a combinatorial argument we show that for $n=10$ the number is 62.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献