Author:
Hopkins Sam,McConville Thomas,Propp James
Abstract
We investigate a variant of the chip-firing process on the infinite path graph $\mathbb{Z}$: rather than treating the chips as indistinguishable, we label them with positive integers. To fire an unstable vertex, i.e. a vertex with more than one chip, we choose any two chips at that vertex and move the lesser-labeled chip to the left and the greater-labeled chip to the right. This labeled version of the chip-firing process exhibits a remarkable confluence property, similar to but subtler than the confluence that prevails for unlabeled chip-firing: when all chips start at the origin and the number of chips is even, the chips always end up in sorted order. Our proof of sorting relies upon an independently interesting lemma concerning unlabeled chip-firing which says that stabilization preserves a natural partial order on configurations. We also discuss some extensions of this sorting phenomenon to other graphs (variants of the infinite path), to other initial configurations, and to other Cartan-Killing types.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献