Algebraically Solvable Problems: Describing Polynomials as Equivalent to Explicit Solutions

Author:

Schauz Uwe

Abstract

The main result of this paper is a coefficient formula that sharpens and generalizes Alon and Tarsi's Combinatorial Nullstellensatz. On its own, it is a result about polynomials, providing some information about the polynomial map $P|_{\mathfrak{X}_1\times\cdots\times\mathfrak{X}_n}$ when only incomplete information about the polynomial $P(X_1,\dots,X_n)$ is given.In a very general working frame, the grid points $x\in \mathfrak{X}_1\times\cdots\times\mathfrak{X}_n$ which do not vanish under an algebraic solution – a certain describing polynomial $P(X_1,\dots,X_n)$ – correspond to the explicit solutions of a problem. As a consequence of the coefficient formula, we prove that the existence of an algebraic solution is equivalent to the existence of a nontrivial solution to a problem. By a problem, we mean everything that "owns" both, a set ${\cal S}$, which may be called the set of solutions; and a subset ${\cal S}_{\rm triv}\subseteq{\cal S}$, the set of trivial solutions.We give several examples of how to find algebraic solutions, and how to apply our coefficient formula. These examples are mainly from graph theory and combinatorial number theory, but we also prove several versions of Chevalley and Warning's Theorem, including a generalization of Olson's Theorem, as examples and useful corollaries.We obtain a permanent formula by applying our coefficient formula to the matrix polynomial, which is a generalization of the graph polynomial. This formula is an integrative generalization and sharpening of:1. Ryser's permanent formula.2. Alon's Permanent Lemma.3. Alon and Tarsi's Theorem about orientations and colorings of graphs.Furthermore, in combination with the Vigneron-Ellingham-Goddyn property of planar $n$-regular graphs, the formula contains as very special cases:4. Scheim's formula for the number of edge $n$-colorings of such graphs.5. Ellingham and Goddyn's partial answer to the list coloring conjecture.

Publisher

The Electronic Journal of Combinatorics

Subject

Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Combinatorial Nullstellensatz and Turán numbers of complete r-partite r-uniform hypergraphs;Discrete Mathematics;2024-07

2. On the Alon–Tarsi number of semi-strong product of graphs;Journal of Combinatorial Optimization;2024-01

3. The Alon–Tarsi number of a toroidal grid;European Journal of Combinatorics;2023-06

4. Polynomials over structured grids;Combinatorics, Probability and Computing;2022-10-04

5. Combinatorial Nullstellensatz and DP-coloring of graphs;Discrete Mathematics;2020-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3