Author:
Bucic Matija,Letzter Shoham,Sudakov Benny
Abstract
The k$-colour bipartite Ramsey number of a bipartite graph $H$ is the least integer $N$ for which every $k$-edge-coloured complete bipartite graph $K_{N,N}$ contains a monochromatic copy of $H$. The study of bipartite Ramsey numbers was initiated over 40 years ago by Faudree and Schelp and, independently, by Gyárfás and Lehel, who determined the $2$-colour bipartite Ramsey number of paths. Recently the $3$-colour Ramsey number of paths and (even) cycles, was essentially determined as well. Improving the results of DeBiasio, Gyárfás, Krueger, Ruszinkó, and Sárközy, in this paper we determine asymptotically the $4$-colour bipartite Ramsey number of paths and cycles. We also provide new upper bounds on the $k$-colour bipartite Ramsey numbers of paths and cycles which are close to being tight.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献