Author:
Huang Mingfang,Santana Michael,Yu Gexin
Abstract
A strong edge-coloring of a graph $G$ is a coloring of the edges such that every color class induces a matching in $G$. The strong chromatic index of a graph is the minimum number of colors needed in a strong edge-coloring of the graph. In 1985, Erdős and Nešetřil conjectured that every graph with maximum degree $\Delta$ has a strong edge-coloring using at most $\frac{5}{4}\Delta^2$ colors if $\Delta$ is even, and at most $\frac{5}{4}\Delta^2 - \frac{1}{2}\Delta + \frac{1}{4}$ if $\Delta$ is odd. Despite recent progress for large $\Delta$ by using an iterative probabilistic argument, the only nontrivial case of the conjecture that has been verified is when $\Delta = 3$, leaving the need for new approaches to verify the conjecture for any $\Delta\ge 4$. In this paper, we apply some ideas used in previous results to an upper bound of 21 for graphs with maximum degree 4, which improves a previous bound due to Cranston in 2006 and moves closer to the conjectured upper bound of 20.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献