A Spectral Extremal Problem on Non-Bipartite Triangle-Free Graphs

Author:

Li Yongtao,Feng Lihua,Peng Yuejian

Abstract

A theorem of Nosal and Nikiforov states that if $G$ is a triangle-free graph with $m$ edges, then $\lambda(G)\le \sqrt{m}$, equality holds if and only if $G$ is a complete bipartite graph. A well-known spectral conjecture of Bollobás and Nikiforov [J. Combin. Theory Ser. B 97 (2007)] asserts that if $G$ is a $K_{r+1}$-free graph with $m$ edges, then $\lambda_1^2(G) + \lambda_2^2(G) \le (1-\frac{1}{r})2m$. Recently, Lin, Ning and Wu [Combin. Probab. Comput. 30 (2021)] confirmed the conjecture in the case $r=2$. Using this base case, they proved further that $\lambda (G)\le \sqrt{m-1}$ for every non-bipartite triangle-free graph $G$, with equality if and only if $m=5$ and $G=C_5$. Moreover, Zhai and Shu [Discrete Math. 345 (2022)] presented an improvement by showing $\lambda (G) \le \beta (m)$, where $\beta(m)$ is the largest root of $Z(x):=x^3-x^2-(m-2)x+m-3$. The equality in Zhai--Shu's result holds only if $m$ is odd and $G$ is obtained from the complete bipartite graph $K_{2,\frac{m-1}{2}}$ by subdividing exactly one edge. Motivated by this observation, Zhai and Shu proposed a question to find a sharp bound when $m$ is even. We shall solve this question by using a different method and characterize three kinds of spectral extremal graphs over all triangle-free non-bipartite graphs with even size. Our proof technique is mainly based on applying Cauchy's interlacing theorem of eigenvalues of a graph, and with the aid of a triangle counting lemma in terms of both eigenvalues and the size of a graph.

Publisher

The Electronic Journal of Combinatorics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Spectral extrema of graphs with fixed size: Forbidden triangles and pentagons;Discrete Mathematics;2024-11

2. A Brualdi–Hoffman–Turán problem on cycles;European Journal of Combinatorics;2024-08

3. Spectral Extremal Graphs without Intersecting Triangles as a Minor;The Electronic Journal of Combinatorics;2024-07-26

4. A spectral Erdős-Rademacher theorem;Advances in Applied Mathematics;2024-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3