Author:
Brignall Robert,Cocks Daniel
Abstract
Given an infinite word over the alphabet $\{0,1,2,3\}$, we define a class of bipartite hereditary graphs $\mathcal{G}^\alpha$, and show that $\mathcal{G}^\alpha$ has unbounded clique-width unless $\alpha$ contains at most finitely many non-zero letters.
We also show that $\mathcal{G}^\alpha$ is minimal of unbounded clique-width if and only if $\alpha$ belongs to a precisely defined collection of words $\Gamma$. The set $\Gamma$ includes all almost periodic words containing at least one non-zero letter, which both enables us to exhibit uncountably many pairwise distinct minimal classes of unbounded clique width, and also proves one direction of a conjecture due to Collins, Foniok, Korpelainen, Lozin and Zamaraev. Finally, we show that the other direction of the conjecture is false, since $\Gamma$ also contains words that are not almost periodic.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献