Author:
Borwein Jonathan M.,Girgensohn Roland
Abstract
Let $a,b,c$ be positive integers and define the so-called triple, double and single Euler sums by $$\zeta(a,b,c) \ := \ \sum_{x=1}^{\infty} \sum_{y=1}^{x-1} \sum_{z=1}^{y-1} {1 \over x^a y^b z^c},$$ $$ \zeta(a,b) \ := \ \sum_{x=1}^\infty \sum_{y=1}^{x-1} {1 \over x^a y^b} \quad $$ and $$ \zeta(a) \ := \ \sum_{x=1}^\infty {1 \over x^a}.$$ Extending earlier work about double sums, we prove that whenever $a+b+c$ is even or less than 10, then $\zeta(a,b,c)$ can be expressed as a rational linear combination of products of double and single Euler sums. The proof involves finding and solving linear equations which relate the different types of sums to each other. We also sketch some applications of these results in Theoretical Physics.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献