Author:
Balogh József,Samotij Wojciech
Abstract
Given a graph $G$ and positive integers $n$ and $q$, let ${\bf G}(G;n,q)$ be the game played on the edges of the complete graph $K_n$ in which the two players, Maker and Breaker, alternately claim $1$ and $q$ edges, respectively. Maker's goal is to occupy all edges in some copy of $G$; Breaker tries to prevent it. In their seminal paper on positional games, Chvátal and Erdős proved that in the game ${\bf G}(K_3;n,q)$, Maker has a winning strategy if $q < \sqrt{2n+2}-5/2$, and if $q \geq 2\sqrt{n}$, then Breaker has a winning strategy. In this note, we improve the latter of these bounds by describing a randomized strategy that allows Breaker to win the game ${\bf G}(K_3;n,q)$ whenever $q \geq (2-1/24)\sqrt{n}$. Moreover, we provide additional evidence supporting the belief that this bound can be further improved to $(\sqrt{2}+o(1))\sqrt{n}$.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A Strategy for Isolator in the Toucher–Isolator Game on Trees;Bulletin of the Malaysian Mathematical Sciences Society;2021-08-29
2. The Game of Toucher and Isolator;Trends in Mathematics;2021
3. On the separation conjecture in Avoider–Enforcer games;Journal of Combinatorial Theory, Series B;2019-09
4. On the optimality of the uniform random strategy;Random Structures & Algorithms;2018-12-10
5. A threshold for the Maker-Breaker clique game;Random Structures & Algorithms;2013-03-05