Smaller Embeddings of Partial $k$-Star Decompositions

Author:

De Vas Gunasekara Ajani,Horsley Daniel

Abstract

A $k$-star is a complete bipartite graph $K_{1,k}$. For a graph $G$, a $k$-star decomposition of $G$ is a set of $k$-stars in $G$ whose edge sets partition the edge set of $G$. If we weaken this condition to only demand that each edge of $G$ is in at most one $k$-star, then the resulting object is a partial $k$-star decomposition of $G$. An embedding of a partial $k$-star decomposition $\mathcal{A}$ of a graph $G$ is a partial $k$-star decomposition $\mathcal{B}$ of another graph $H$ such that $\mathcal{A} \subseteq \mathcal{B}$ and $G$ is a subgraph of $H$. This paper considers the problem of when a partial $k$-star decomposition of $K_n$ can be embedded in a $k$-star decomposition of $K_{n+s}$ for a given integer $s$. We improve a result of Noble and Richardson, itself an improvement of a result of Hoffman and Roberts, by showing that any partial $k$-star decomposition of $K_n$ can be embedded in a $k$-star decomposition of $K_{n+s}$ for some $s$ such that $s < \frac{9}{4}k$ when $k$ is odd and $s < (6-2\sqrt{2})k$ when $k$ is even. For general $k$, these constants cannot be improved. We also obtain stronger results subject to placing a lower bound on $n$.

Publisher

The Electronic Journal of Combinatorics

Subject

Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3