Author:
Jelínek Vít,Mansour Toufik
Abstract
A set partition of size $n$ is a collection of disjoint blocks $B_1,B_2,\ldots$, $B_d$ whose union is the set $[n]=\{1,2,\ldots,n\}$. We choose the ordering of the blocks so that they satisfy $\min B_1 < \min B_2 < \cdots < \min B_d$. We represent such a set partition by a canonical sequence $\pi_1,\pi_2,\ldots,\pi_n$, with $\pi_i=j$ if $i\in B_j$. We say that a partition $\pi$ contains a partition $\sigma$ if the canonical sequence of $\pi$ contains a subsequence that is order-isomorphic to the canonical sequence of $\sigma$. Two partitions $\sigma$ and $\sigma'$ are equivalent, if there is a size-preserving bijection between $\sigma$-avoiding and $\sigma'$-avoiding partitions. We determine all the equivalence classes of partitions of size at most $7$. This extends previous work of Sagan, who described the equivalence classes of partitions of size at most $3$. Our classification is largely based on several new infinite families of pairs of equivalent patterns. For instance, we prove that there is a bijection between $k$-noncrossing and $k$-nonnesting partitions, with a notion of crossing and nesting based on the canonical sequence. Our results also yield new combinatorial interpretations of the Catalan numbers and the Stirling numbers.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献