Abstract
In [5], we studied binary codes with covering radius one via their characteristic functions. This gave us an easy way of obtaining congruence properties and of deriving interesting linear inequalities. In this paper we extend this approach to ternary covering codes. We improve on lower bounds for ternary $1$-covering codes, the so-called football pool problem, when $3$ does not divide $n-1$. We also give new lower bounds for some covering codes with a covering radius greater than one.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. An improved upper bound for the football pool problem for nine matches;Journal of Combinatorial Theory, Series A;2003-04
2. Complexity;Covering Codes;1997
3. Bibliography;Covering Codes;1997