Maximal Sets of $k$-Spaces Pairwise Intersecting in at Least a $(k-2)$-Space
-
Published:2022-03-25
Issue:1
Volume:29
Page:
-
ISSN:1077-8926
-
Container-title:The Electronic Journal of Combinatorics
-
language:
-
Short-container-title:Electron. J. Combin.
Author:
D'haeseleer Jozefien,Longobardi Giovanni,Riet Ago-Erik,Storme Leo
Abstract
In this paper, we analyze the structure of maximal sets of $k$-dimensional spaces in $\mathrm{PG}(n,q)$ pairwise intersecting in at least a $(k-2)$-dimensional space, for $3 \leq k\leq n-2$. We give an overview of the largest examples of these sets with size more than $f(k,q)=\max\{3q^4+6q^3+5q^2+q+1,\theta_{k+1}+q^4+2q^3+3q^2\}$.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics